Stage and Size Structure of Three Species of Oaks In Central Coastal California

Author(s): Ian S. Pearse Sophie Griswold and Desirree Pizarro Walter D. Koenig
Published By: California Botanical Society
DOI: http://dx.doi.org/10.3120/0024-9637-61.1.1
URL: http://www.bioone.org/doi/full/10.3120/0024-9637-61.1.1

BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses.

Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use.

Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder.
STAGE AND SIZE STRUCTURE OF THREE SPECIES OF OAKS IN CENTRAL COASTAL CALIFORNIA

IAN S. PEARSE
Cornell Lab of Ornithology, 159 Sapsucker Woods Road, Ithaca, NY 14850 and Illinois Natural History Survey, 1816 S Oak St, Champaign, IL 61820
ianspearse@gmail.com

SOPHIE GRISWOLD AND DESIRREE PIZARRO
Cornell Lab of Ornithology, 159 Sapsucker Woods Road, Ithaca, NY 14850

WALTER D. KOENIG
Cornell Lab of Ornithology, 159 Sapsucker Woods Road, Ithaca, NY 14850 and Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853

ABSTRACT

Oaks are foundational species in much of California, and many oak populations in the state may be in jeopardy due to a lack of recruitment of young trees. Despite considerable interest in this problem, there have been few comprehensive surveys of all stages of oak development. We surveyed all stages of three oaks: Quercus lobata, Q. douglasii, and Q. agrifolia in a forest plot with mixed land-use in central coastal California. We found abundant seedlings of all oak species, but an apparent paucity of Q. lobata and Q. douglasii saplings. First year seedlings of all species were less abundant in parts of the study site with cattle grazing, but later-stage seedlings of Q. lobata and Q. douglasii were equally abundant across land-use types. Quercus agrifolia seedlings were associated with non-grazed areas; Quercus agrifolia late-stage seedlings in the grazed area were smaller and less abundant than in non-grazed areas. Quercus agrifolia seedlings of all stages tended to be clustered around conspecific mature trees. Quercus lobata late-stage seedlings, and to a lesser degree those of Q. douglasii, were often distant from any potential parent tree. These data indicate that young stages of the three species of oak have different spatial distributions and occur in different abundances at two sites with different grazing regimes. They are also consistent with a relative lack of regeneration in Q. lobata and Q. douglasii, although it remains to be determined that the small number of saplings of these species observed is insufficient to replace mortality of mature trees. This survey provides a baseline from which future resampling can assess the long-term demographic success of three Californian oak species.

Key Words: regeneration, demography, Quercus.
species. Moreover, they indicated that detailed demographic models are needed to address the question of whether low observed recruitment levels are actually insufficient to replace stands of long-lived adults. Likewise, a detailed demographic analysis of oak populations could ask specifically which life stages most limit population growth (Tyler et al. 2006; Zavaleta et al. 2007; Davis et al. 2011). Meanwhile, studies have suggested that a third species of Californian oak, Q. agrifolia Née, may not be undergoing similar low regeneration rates as its two sympatric congeners, even though it may be affected by some of the same recruitment challenges (Callaway and Davis 1998; Mahall et al. 2009).

While studies have successfully documented multiple site specific factors likely affecting populations of Californian oaks, there is still a relative lack of the explicit demographic modeling of oak populations needed to quantify the risk to oak populations and to assess which life stages of oaks are of the highest conservation value. The only current study that explicitly reconstructs Q. lobata demography uses an experimental approach, which is very valuable in determining causal factors that limit Q. lobata success (Davis et al. 2011). Observational studies that thoroughly survey oak populations that are both geographically referenced and include all life stages of the oaks complement experimental studies. Such surveys will be valuable because they can be easily resampled in order to directly assess vital rates and stage transitions. At the same time, comprehensive site surveys observe oak populations across all microhabitats at a site, which is difficult in manipulative studies.

Here we present a baseline survey of the oaks on a portion of Hastings Natural History Reserve (HNHR) and the adjacent Oak Ridge Ranch (ORR) property in Monterey County of central coastal California. We surveyed the size, stage, and geographic location of 19,755 individuals of the three dominant oak species (Q. lobata, Q. douglasii, and Q. agrifolia) in a 52.6 hectare area encompassing forest, grassland, and savannah habitats. This survey also encompassed areas with strikingly different recent land use histories, as HNHR has been protected from cattle grazing since 1937, but ORR continues to experience significant regular cattle grazing. We use this survey primarily to establish a baseline for parameterizing future demographic models of oak populations, and we make this baseline data available to the general scientific community. We analyzed the size structure and spatial distribution of early and late seedling stages of these oaks in order to ask to what degree habitat type and land use affect the size of late-stage seedlings and the proximity of seedlings to a potential parent.

Methods

Study Area and Natural History

The survey was conducted on Haystack Hill and surrounding areas (36.385114 N, -121.561906 W) on Hastings Natural History Reservation (HNHR) and the adjacent Oak Ridge Ranch (ORR) (Fig. 1). The study area is typical of coast range oak habitat, is the site of several studies of oak populations (White 1966; Griffin 1971, 1976; Koenig and Knops 2007), and is central (within 70 km of 1/3 of the study sites) to the sites used in a recent meta-analysis of Californian oak populations (Zavaleta et al. 2007). The study area has a Mediterranean climate typical of California’s coast range. In the year of the survey, the average rainfall was 475 mm, which was slightly less than the 30 year average for the site (540 mm – Hastings Weather Station http://www.hastingsreserve.org/weather/Weather.html). The study area was roughly delimited by the contour of the hill. We excluded a large patch of dense chaparral that would have been within the study, as the area was too densely vegetated to use the same survey techniques as in other areas and contained few oak trees, with the exception of a small number of Q. agrifolia individuals at the bottom of dry washes that descended the hillside through chaparral.

The study area was divided into three habitat types based on tree cover and groundcover type: forest, savanna, and grassland (Griffin 1990). ‘Forest’ had a complete canopy cover. Forest understory was dominated by poison oak (Toxicodendron diversilobum [Torr. & A. Gray] Greene) and had little to no grass cover. One forest region had a substantial stand of madrone (Arbutus menziesii Pursh), whereas oaks dominated all others. ‘Savanna’ had a partial canopy cover and an understory of native and non-native grasses including Avena L. sp., Bromus hordeaceus L., B. diandrus Roth, Hordeum L. sp., Stipa pulchra Hitchc., and Aira caryophylla L., as well as forbs such as Madia gracilis (Sm.) D. D. Keck, Asclepias eriocarpa Benth., Plagiobothrys Fisch. & C.A. Mey. sp., and Anisacenia menziesii (Lehm.) A. Nelson & J.F. Macbr. ‘Grasslands’ had sparse to no tree cover and were dominated by the same mix of grasses and forbs. Small remnants of perennial grasslands (sensu Griffin 1990) dominated by Stipa pulchra were included in this category. There was considerable variation in both slope and aspect of habitat types within the study area, but both study sites (HNHR and ORR) had both steep and relatively flat forests, grasslands, and savannahs. One difference between the two sites was the presence of a small creek bed at the HNHR site that had a high abundance of Q. agrifolia seedlings.

The study site was divided approximately down the middle by a fence separating HNHR
from ORR. The land use of the two areas can be summarized as follows. Prior to 1930, both sites had a history of mixed land use including ranching, timber harvest, and small-scale agriculture (Griffin 1990). HNHR was donated to the University of California in 1937 at which point all grazing and agriculture was stopped. At ORR, moderate year-round cattle grazing continues to present day, including during the active survey period, although no tillage or significant timber harvest has been recorded within the study area within recent history. While oak plantings and restoration efforts have been made in other portions of HNHR, none of these activities have occurred within the study area.

The year preceding our survey had a moderate to good acorn crop for all three oak species. Based on the Koenig visual count method (Koenig et al. 1994a), the 2011 *Q. lobata* acorn crop was 15% greater than the 30-year mean *Q. lobata* crop (Pearse et al. 2014). Likewise, the 2011 *Q. douglasii* acorn crop was 63% greater than its 30-year mean, and the 2011 *Q. agrifolia* acorn crop was 29% greater than its 30-year mean.

Survey Methods

We surveyed all valley oak, blue oak, and coast live oak individuals within the study area in May through early July 2012. We marked 10 m wide transects across the study area and used a GPS to record the locality of each oak within the area to an accuracy of 5 m. For each individual, we recorded one of four growth stages. Seedlings were first year germinants from acorns. All had unbranched stems, and most were still connected to a partially buried acorn. Late-stage seedlings were over one year old, less than 1.5 meters in height, had branched or multiple stems, and lacked a connected acorn. Saplings were greater than 1.5 meters in height, less than 10 cm DBH, and had not yet begun to produce fruit or flowers. Adult trees were over 10 cm DBH. We considered these classes to be biologically useful, as demographic parameters including growth rate, survivorship, and reproduction likely vary between stages (e.g., Griffin 1971; Koenig and Knops 2007). For all late-stage seedlings, we also recorded height and canopy width and calculated seedling volume as height \(\times \) width. For all first-year seedlings, late-stage seedlings, and saplings, we also calculated Euclidean distance to the nearest conspecific adult tree. We tagged each adult tree and recorded which first year seedlings, late-stage seedlings, and saplings were within 20 m of its trunk.

Statistical Analysis

While the two landscape level factors – habitat and property, the latter corresponding to differ-
ent land use – are spatially non-independent, we used these data to build a case study of oak populations at a single, large site. Specifically, our goal was to explore variation in 1) the size of late-stage seedling oaks, as this size class may escape grazing at large sizes (either by being tall or very wide), 2) the distance of seedlings and late-stage seedling oaks from a potential (conspecific) parent tree, and 3) the composition of oak seedlings in the understory of individual adult trees. All statistics were calculated in R using package car (R Core Development Team 2008; Fox and Weisberg 2011). Our georeferenced dataset is made available at the Dryad data repository http://dx.doi.org/10.5061/dryad.467g5 and on the authors’ websites http://www.nbb.cornell.edu/wkoenig; http://ianpearse.wordpress.com.

Results

Habitat and Land-use Associations

We surveyed 52.6 ha and gathered data on a total 19,755 individuals of the three oak species across both properties (HNHR and ORR) and all habitats (Fig. 1, Table 1). The surveyed area of each habitat type at each property was similar, and we report the densities of oaks at each stage in each habitat type at each property was similar, habitats (Fig. 1, Table 1). The surveyed area of across both properties (HNHR and ORR) and all total 19,755 individuals of the three oak species

Table 1. The Density of Three Oak (Quercus) Species (Trees/Hectare) in Three Habitat Types Spanning the Ungrazed Hastings Natural History Preserve (HNHR) and Grazed Oak Ridge Ranch (ORR). All trees (>10 cm DBH), saplings (>1.5 m tall), late-stage seedlings (multiple stems, no attached acorn), and first-year seedlings (single stem, often acorn still attached) within the total 52.57 ha survey area were recorded resulting in 19,755 records of oak individuals.

<table>
<thead>
<tr>
<th>Species</th>
<th>Forest</th>
<th>Savannah</th>
<th>Grassland</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HNHR</td>
<td>ORR</td>
<td>HNHR</td>
</tr>
<tr>
<td>Quercus lobata</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area (ha)</td>
<td>8.21</td>
<td>8.89</td>
<td>8.23</td>
</tr>
<tr>
<td>1st year seedling</td>
<td>161.75</td>
<td>7.2</td>
<td>49.09</td>
</tr>
<tr>
<td>Late stage seedling</td>
<td>47.14</td>
<td>17.55</td>
<td>24.79</td>
</tr>
<tr>
<td>Sapling</td>
<td>0.24</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Tree</td>
<td>17.54</td>
<td>10.01</td>
<td>13.49</td>
</tr>
<tr>
<td>Quercus douglasii</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area (ha)</td>
<td>18.39</td>
<td>176.04</td>
<td>84.93</td>
</tr>
<tr>
<td>1st year seedling</td>
<td>29.6</td>
<td>194.94</td>
<td>94.9</td>
</tr>
<tr>
<td>Late stage seedling</td>
<td>0.49</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sapling</td>
<td>11.33</td>
<td>69.74</td>
<td>22.72</td>
</tr>
<tr>
<td>Tree</td>
<td>455.18</td>
<td>23.17</td>
<td>57.84</td>
</tr>
<tr>
<td>Quercus agrifolia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area (ha)</td>
<td>209.38</td>
<td>76.83</td>
<td>24.18</td>
</tr>
<tr>
<td>1st year seedling</td>
<td>15.23</td>
<td>0.45</td>
<td>0</td>
</tr>
<tr>
<td>Late stage seedling</td>
<td>55.05</td>
<td>27.67</td>
<td>6.44</td>
</tr>
</tbody>
</table>

with savannah, although the distribution of overstory trees only partially reflected this trend.

All growth stages of Q. douglasii were uncommon in grasslands at all sites (Table 1). There was a greater abundance of early growth stages of Q. douglasii at ORR than at HNHR (4059 versus 1966), reflecting the distribution of adult trees at the two sites (677 versus 281). There was a full-canopied Q. douglasii forest on ORR, and all growth stages of Q. douglasii at ORR were more closely associated with forest than at HNHR, where Q. douglasii was more abundant in open savannah habitat. Quercus agrifolia was associated with full-canopied forest habitats at both sites and was particularly abundant in HNHR forests. Quercus agrifolia was also more abundant in HNHR grasslands and savannas than the same habitat types at ORR. There were strikingly fewer Q. agrifolia first year seedlings in all habitats on ORR than on HNHR (219 versus 4881), which would be consistent with an impact of grazing on Q. agrifolia seedling abundance. For Q. agrifolia, this trend persisted into late-stage seedlings, where there were fewer Q. agrifolia late-stage seedlings at ORR than at HNHR (788 versus 1991).

There were few saplings of both Q. lobata and Q. douglasii in all habitats at both properties (four Q. lobata saplings and five Q. douglasii seedlings), consistent with perceived recruitment problems with these species. In contrast, Q. agrifolia saplings were reasonably common (n = 135), almost all of which were associated with forest sites on the ungrazed HNHR property (Table 1).

Size of Late Stage Seedlings

We measured the volume of late-stage seedlings (excluding first-year seedlings) (Fig. 2).
Quercus lobata late-stage seedlings tended to be larger in more open habitats such as grasslands irrespective of whether the site was grazed or not (Fig. 2). Quercus lobata seedlings in savannahs were four times larger on ORR than on HNHR (Fig. 2) and similar in size in other habitat types, a finding that is not consistent with cattle grazing being a factor limiting seedling growth of this species.

Quercus douglasii late-stage seedlings showed similar size trends to Q. lobata, with larger late-stage seedlings in grasslands than in other habitat types (Fig. 2). Unlike Q. lobata, they were roughly the same size across land-use types in all habitats.

Quercus agrifolia late-stage seedlings showed the strongest size association with land use type of the three species. In both grasslands and forests, Q. agrifolia late-stage seedlings at HNHR were 300–400% larger than those in the same habitats on ORR (Fig. 2). Quercus agrifolia late-stage seedlings in savannah habitat were smaller than in other habitats (Fig. 2). The variation in size of seedlings was greatest in grassland habitats.

Spatial Distribution of Seedlings

We measured the distance from each first year seedling and late stage seedling to its nearest mature conspecific tree (i.e., potential parent) (Fig. 3). Quercus lobata first-year seedlings averaged 12.4 meters from the nearest potential parent. Quercus lobata late stage seedlings were on average further from the nearest potential parent than seedlings of the other species, and this distance was even greater on ORR than on HNHR (15.6 m and 14.3 m respectively, Fig. 3). Quercus douglasii seedlings were generally closer to a potential parent than Q. lobata seedlings, likely reflecting the density of stands of these tree species (Fig. 3). Both Q. douglasii first-year and late-stage seedlings averaged 8 m from the nearest potential parent on HNHR (Fig. 3). On ORR, first-year Q. douglasii seedlings averaged 4.7 m from the nearest potential parent and late-stage seedlings averaged seven m. Quercus agrifolia seedlings averaged 7.5 m from the nearest potential parent, a value that did not vary by either seedlings class ($F_{1,3855} = 2.0$, $P = 0.16$) or property ($F_{1,3855} = 0.002$, $P = 0.96$, Fig. 3).

We also measured the composition of the seedling oak community underneath mature trees of each of the three oak species and found that the understories of both Q. douglasii and Q. agrifolia were dominated by their conspecific seedlings (Fig. 4). In contrast, the understories of Q. lobata trees had a roughly even distribution of seedlings from all three oak species. Similarly, Q. lobata seedlings were the least abundant component of the understories of either Q. douglasii or Q. agrifolia.

DISCUSSION

The size and age distributions of the three species of oaks surveyed in this study varied between properties with different land-use history, but these differences were fairly subtle. There were fewer valley oak (Q. lobata) first-year seedlings per adult tree on the grazed site (ORR) than on the ungrazed site (HNHR),
However, the abundance of late-stage seedlings was similar at both sites (Table 1). Moreover, *Q. lobata* late-stage seedlings were on average larger at the grazed site, further suggesting that cattle grazing may affect the survival of first-year seedlings, but may have little or no effect on the long-term survival of established seedlings. *Quercus douglasii* populations had generally the same associations as *Q. lobata* with the two major land use patterns (Table 1, Fig. 2), except that there was a large number of first-year and late-stage *Q. douglasii* seedlings in a dense forest patch on ORR (Table 1). The larger size of late-stage seedlings at the grazed site suggests that cattle grazing does not limit (and may even promote) the growth of these seedlings at our study area.

The land-use differences in this survey are consistent with effects of cattle grazing on *Q. douglasii* and *Q. lobata* observed in other studies. For example, experimental manipulation of grazing did not affect the survivorship of late-stage (2-year old) seedlings in a Sierra Nevada foothills population of *Q. douglasii* (Hall et al. 1992), and grazing decreased the total abundance of naturally recruiting *Q. douglasii* seedlings (likely including a large portion of first-year seedlings) in only one out of four years (Reiner and Craig 2011). Livestock grazing may have imposed a sufficient herbivore pressure to partially negate the protective effect of high vegetation cover for *Q. agrifolia* seedlings.

Interestingly, our survey found fewer (Table 1) and smaller (Fig. 2) early-stage *Q. agrifolia* individuals on the grazed property (ORR) than on the ungrazed property (HNHR). Unlike in *Q. douglasii*, *Q. agrifolia* later-stage seedlings were both smaller and less abundant (with reference to mature trees) on ORR than on HNHR (Fig. 2, Table 1). Moreover, there were far more *Q. agrifolia* saplings per mature tree on HNHR than on ORR (Table 1). As non-adult stages appear to be more represented at HNHR than at ORR, this suggests that *Q. agrifolia* population growth on HNHR may be higher than on the grazed adjacent property. *Quercus agrifolia* populations are thought to be stable or even increasing in many regions with high forest or shrub cover, but are unable to colonize open habitat, presumably because shrubs provide a refuge from wildlife or livestock grazing (Callaway and Davis 1998). In the current survey, *Q. agrifolia* was strongly associated with habitats with greater shrub and tree cover, and livestock grazing may have imposed a sufficient herbivore pressure to partially negate the protective effect of high vegetation cover for *Q. agrifolia* seedlings.

The seedlings of each of the three oak species had unique spatial distributions with reference to their potential parental trees. The distribution of first-year seedlings likely reflects patterns of acorn fall and immediate dispersal. As acorn production is pulsed (i.e., varies dramatically from year to year) and synchronous between trees.
the distribution of first-year seedlings may vary substantially from year to year. On the other hand, the late-stage seedlings of oaks in this habitat may be very long-lived (Koenig and Knops 2007), so their distribution is unlikely affected by temporal variation in acorn crop. *Quercus lobata* first year seedlings were clustered around potential parental trees, likely reflecting patterns of acorn fall. Late-stage *Q. lobata* seedlings, however, were on average further from a potential parent, especially on the grazed property (Fig. 3). This, in combination with few seedlings altogether at some sites, resulted in an underrepresentation of *Q. lobata* seedlings in the understory of *Q. lobata* mature trees (Fig. 4). *Quercus douglasii* seedlings were more abundant under their parent tree (Fig. 4), although late-stage seedlings tended to be located further from a potential parent than first-year seedlings (Fig. 3). Both first year and late-stage *Q. agrifolia* seedlings were strongly clustered around potential parental trees (Fig. 3), and *Q. agrifolia* seedlings were highly represented in the understories of *Q. agrifolia* trees (Fig. 4).

These results suggest a hierarchy in the ability of oak seedlings to colonize open habitat. *Quercus lobata* was often found far from its parental species, consistent with previous studies showing that *Q. lobata* seedlings better tolerate dry habitats (Mahall et al. 2009) and deer browsing (Tyler et al. 2008) better than *Q. agrifolia*. *Quercus douglasii* has been shown to tolerate dry, exposed habitats (Griffin 1971), but it may be negatively affected by direct competition from non-native grasses in open areas (Gordon and Rice 2000) and is associated with shrub cover (Callaway 1992). *Quercus agrifolia* has been shown to be strongly associated with shrubby or forested habitat, which provides protection from herbivores (Callaway and Davis 1998).

The factors that limit oak populations are thought to be somewhat site-specific. This has led to both studies that attempt to find those factors that are important across many site (Zavaleta et al. 2007) and detailed studies that attempt to assess the causal factors limiting oak seedling success at individual sites (Davis et al. 2011). Our study will be useful in both of these goals. By establishing a baseline survey at a site, where the history of factors that could potentially affect oak populations (e.g., grazing, habitat affiliation, wildlife density) is well documented, our study can easily be combined with other surveys at different geographic locations in order to assess the generality of these factors. Likewise, by having a population of oaks where all stages are surveyed and georeferenced, this survey opens the possibility of resampling to determine the key demographic limitations at this representative site.

Explicit demographic models of Californian oak populations are important to understand the sustainability of the state’s oak populations (Davis 2011). This study provides a thorough baseline estimate of populations of *Q. lobata*, *Q. douglasii*, and *Q. agrifolia* that can be used by future resampling and modeling efforts to estimate demographic transitions between life-history stages and thus the long-term dynamics of oak populations. For example, at the same site, a marked population of blue oak late-stage seedlings has persisted with little growth, little mortality, and no transitions to saplings within
the past 60 years (Koenig and Knops 2007). Moreover, there are currently no robust estimates of age-biased mortality for adult valley oaks, which is a critical parameter in estimating the necessary rate of replacement by seedlings (Tyler et al. 2006). By marking a large number of trees and seedlings, as well as the few observed saplings, resampling of this study may observe enough stage-transitions to accurately parameterize demographic models of oak populations at a large, natural site.

ACKNOWLEDGMENTS

We thank Vince Voegeli and the management of Oak Ridge Ranch for access to the study site. This study was supported by an NSF REU grants DEB-1021417 and DEB-1212885 and NSF grant DEB 0816691 to WDK.

LITERATURE CITED

